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Abstract

For a particle beam propagating in an alternating gradient
focusing system, envelope equations are often employed
to describe the evolution of the beam radii in the two
directions transverse to the direction of propagation, and
aligned with the principle axes of the alternating gradient
system. When the beams have zero net angular
momentum and when the alternating gradient focusing is
approximated by a continuous focusing system, there are
two normal modes to the envelope equations: the
’breathing’ mode and a ’quadrupole’ mode.  In the former,
the two radii oscillate in phase, and in the latter the radii
oscillate 180 degrees out of phase. In this paper, we
extend the analysis to include beams that have a finite
angular momentum. We perturb the moment equations of
ref. [1], wherein it was assumed that space charge is a
distributed in a uniform density ellipse. Two additional
modes are obtained. The breathing mode remains, but the
quadrupole mode is split into two modes, and a new low
frequency mode appears. We calculate the frequencies and
eigenmodes of these four modes as a function of tune
depression and a dimensionless net angular momentum.
These modes can be excited by rotational errors of the
quadrupoles in an alternating gradient focusing channel..

1 INTRODUCTION
When a beam has angular momentum about the axis
parallel to the propagation axis, or when the principle axes
of a beam with elliptical cross-section do not align with
the principle axes of a quadrupole, the x and y momentum
equations are coupled and hence, the x and y normalized
emittances are not conserved, even for a beam with an
initial Kapchinskij-Vladimirskij (K-V) distribution with a
linear space charge force profile propagating under linear
external forces.  However,  if the equations of motion
result from linear forces and are derivable from a
Hamiltonian system, constants of the motion may be
obtained analogous to the normalized x and y emittances
[2].  Further, the K-V distribution has been generalized [3]
to distributions in which the principal axes do not align
with the x and y axes, and moment equations have been
derived [1, 5] that assume the space-charge profile
remains linear, consistent with the assumption of the KV-
like distribution of ref. [3].  In ref. [1], a drifting, non-
relativistic beam was assumed, and a conserved emittance
was derived that is equivalent to the first of the
conservation constraints in ref. [2]. The second invariant
was independently derived in ref. [5]. In ref. [4], the
equations were generalized to include acceleration, and
the two normalized generalized emittances were evaluated
using the methodology of ref. [2]. In ref. [5], moment
equations were derived for the case of quadrupoles in

which the principle axes continuously rotate along the
longitudinal (z) direction, and the stability of the system
was examined.

2 MOMENT EQUATIONS
In this section, we use the moment equations of ref. [1],

to describe the evolution of an elliptical beam with
arbitrary rotation angle. As in ref. [1], for simplicity we
consider non-relativistic beams. We assume the space
charge force can be calculated from that of a beam with
elliptical symmetry but that is rotated with respect to the z
axis. The transverse (x and y) equations of motion of a
single particle are then:
d 2 x / dz 2 = Kqxxx + Kqxyy + Ksxx(x − x ) + Ksxy(y − y )

d 2 y / dz2 = Kqyyy + Kqxyx + Ksyy(y − y ) + Ksxy(x − x )   (1)

Here Kqxx = Kq0cos2θ, Kqxy= Kq0sin2θ, (where θ is the
rotation angle of the quadrupole about the z-axis), and
Kq0= ( ′ B /[Bρ]  for magnetic quadrupole focusing,

′ E /(2V)  for electric quadrupole focusing, and −kβ0
2 for

uniform focusing). Here ′ B  (or ′ E ) is the magnetic (or
electric) field gradient, [Bρ] is the ion rigidity, and qV is
ion kinetic energy, where q is the ion charge.
Also, Kqyy = -Kqxx for electric or magnetic quadrupole
focusing, and Kqyy=Kqxx for uniform focusing.
Ksxx=Ksxbcos2α + Ksybsin2α, and Ksyy=Ksybcos2α +
Ksxbsin2α, where Ksxb=Q/(2[∆xb

2 + [∆xb

2∆yb

2]1/2]),
Ksyb=Q/(2[∆yb

2 + [∆xb

2∆yb

2]1/2]). Here the beam widths
along the principle axes are given by ∆xb

2=∆x2cos2α +
∆y2sin2α + 2∆xy sinα cosα  and ∆yb

2=∆y2cos2α + ∆x2sin2α
- 2∆xy sinα cosα.  The quantity α is the rotation angle of
the beam given by tan 2α = 2∆xy/(∆x2-∆y2); and Q =
λ/(4πε0V) is the generalized perveance for a non-
relativistic beam, with line charge density λ and where ε0

is the permittivity of free space.  We have used the
notation ∆ab = ab − a b , where  denotes average

over the distribution function.
The set of ten first order equations for the quadratic

moments of the distribution, obtained by averaging eq. (1)
over the distribution function, was found in ref. [1] to be:
d∆x 2 / dz = 2∆x ′ x 
d∆x ′ x /dz = ∆ ′ x 2 + Kxx ∆x2 + K xy∆xy

d∆ ′ x 2 / dz = 2Kxx ∆x ′ x + 2K xy∆ ′ x y

d∆y 2 / dz = 2∆y ′ y 

d∆yy’/ dz = ∆y’2 +Kxx∆y2 + Kxy∆xy

d∆y’2 / dz = 2Kyy∆yy’+2K xy∆xy’
d∆xy / dz = ∆xy’+∆x’ y

d∆x’y / dz = ∆x’ y’+Kxx ∆xy + Kxy∆y2

d∆xy’/ dz = ∆x’y’ +Kyy∆xy + K xy∆x2

d∆x’y’ / dz = Kxx ∆xy’+Kxy∆yy’+Kyy ∆x’ y + Kxy ∆xx’      (2)
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Here, Kxx = Kqxx + Ksxx  ; Kxy =  Kqxy +  Ksxy  ; and
Kyy =  Kqyy +  Ksyy  .

3 EQUILIBRIUM
We first examine the case of uniform focusing, which
represents the focusing force averaged  over a lattice
period, (or the force arising from a background of uniform
density space charge with sign opposite to the beam
charge.)  In this case, Kqxx = Kqyy≡ -kβ0

2;
Ksxx0=Ksyy0≡ ksc0

2=Q/(4∆x0

2); and  Kqxy = 0.  Each of the 10
moments in eq. 2, have the equilibrium values (subscript
0) given by: ∆x0

2 = ∆y0
2 , ∆ ′ x 0

2 = ∆ ′ y 0
2 = (kβ0

2 −ksc0
2 )∆x0

2 ,

∆x ′ y 0 = −∆ ′ x y0 ≡ l0 / 2 ;
∆x ′ x 0 = ∆y ′ y 0 = ∆xy0 = ∆ ′ x ′ y 0 = Kxy0 = 0, where l0 is

proportional to the angular momentum of the beam.  With
these values, the right hand sides of eq. 2 are zero, and the
beam moments are stationary.

4 LINEARIZED EQUATIONS

We now examine perturbations about this equilibrium of
the form, ∆x2 = ∆x0

2 + ∆x1
2 exp(ikz) , and

∆y2 = ∆y0
2 + ∆y1

2 exp(ikz) , etc. for each of the 10
moments. Here subscript 1, indicates the amplitude of the
perturbation. As in ref. [5], we linearize equation 2,
obtaining a set of equations for the eigenfrequency k:

ik∆x1
2 = 2∆x ′ x 1

ik∆x ′ x 1 = ∆ ′ x 1
2 − kβ0

2 ∆x1
2 + ksc0

2 (∆x1
2 − ∆y1

2 ) / 4

ik∆ ′ x 1
2 = −2(kβ0

2 − ksc 0
2 )∆x ′ x 1 + ksc0

2 (∆x ′ y 0 / ∆x0
2 )∆xy1

ik∆y1
2 = 2∆y ′ y 1

ik∆y ′ y 1 = ∆ ′ y 1
2 −kβ0

2 ∆y1
2 + ksc0

2 (∆y1
2 − ∆x1

2 ) / 4

ik∆ ′ y 1
2 = −2(kβ0

2 −ksc0
2 )∆y ′ y 1 −ksc0

2 (∆x ′ y 0 / ∆x0
2 )∆xy1

ik∆xy1 = ∆x ′ y 1 + ∆ ′ x y1

ik∆ ′ x y1 = ∆ ′ x ′ y 1 − (kβ0
2 −ksc0

2 / 2)∆xy1 (3)

ik∆x ′ y 1 = ∆ ′ x ′ y 1 − (kβ0
2 −ksc0

2 / 2)∆xy1

ik∆ ′ x ′ y 1 = −(kβ0
2 −ksc0

2 )(∆x ′ y 1 + ∆ ′ x y1 ) −ksc0
2 (∆x ′ y 0 / 2∆x0

2)(∆x1
2 − ∆y1

2)

Here ksc0
2 ≡ Q / 4∆x0

2 , and we have found and used the
relations:
Ksxx1 = −ksc0

2 (3∆x1
2 + ∆y1

2 )/(4∆x0
2) ,

Ksyy1 = −ksc 0
2 (3∆y1

2 + ∆x1
2 ) /(4∆x0

2 ) , and

Ksxy1 = −ksc 0
2 ∆xy1 /(2∆x0

2 ) .

5 EIGENVALUES AND EIGENMODES
Equation (3) can be expressed as matrix equation of the
form M.x=0, where x is the column vector of the 10
quadratic moments and M is a 10 by 10 matrix. The
determinant of M yields an eigenvalue equation with 4
distinct non-zero frequencies given by:

kB / kβ0 = 2(1+ µ 2 )

kQ± / kβ0 =
(1− µ 2 )1/ 3δ±

3(2 1/ 3 )
+

21/ 3 (1+3µ 2 )
(1 −µ 2 )1/ 3δ±

kL / kβ0 =
(1− µ2 )1/ 3δ± (−1− 3i)

6(21 /3 )
−

(1+ 3µ 2 )(1− 3i)

22 /3 (1− µ 2 )1 /3δ±

(4)

Here, δ± ≡ 3(2Γ )1/ 3 ±1 + i
1

27α
−1

 
  

 
  

1/ 2 

 
 

 

 
 

1 /3

Γ ≡ ∆x ′ y 0 /(kβ0∆x0
2 ) ; α=Γ2(1-µ2)2/(1+3µ2)3; and

µ2 ≡1 −ksc0
2 /kβ0

2 .

Here kB is the frequency of the breathing mode, unaltered
in form by the beam; kQ+ and kQ-  are the quadrupole modes,
now split into two modes as a result of the rotation; and kL

is the frequency of the low frequency mode, a new mode
present only with rotation.  Eq. (4) lists positive roots; the
negatives of these roots are also solutions (see fig. 1).

Figure 1. Mode frequency vs. tune depression for Γ=0.1.
For α <1 /27 ≅ 0.037  all modes are real.

One can express eq. (4) such that the real parts of the
quadrupole  and low frequency modes are explicit, and are
expressed relative to the quadrupole frequency in the

absence of rotation kQ0 ≡ kβ0 1+3µ 2 :

kL / kQ0 = (2 /3)(1 −cosθ)  and

kQ ± / kQ0 = (2 /3)(1 + (1/ 2)cosθ ± ( 3 / 2) sinθ)

where θ =
1
3

tan−1 6 3α (1 −27α )
1 −54α

 

 
 

 

 
 .

Thus kL / kQ0  and kQ ± / kQ0 are functions of the single
parameter  α which we plot in figure 2.

The breathing eigenmode is unaltered by rotation with the
perturbation in ∆x2 in phase with the motion in ∆y2, and
with the four perturbations to the cross moments zero.
Remarkably, all of the other modes, maintain a constant
ellipticity during a complete cycle of the perturbation. (It

µ

k/
k β

0



was found by numerically integrating eqs. (2) that the
values of ∆xb

2 and ∆yb

2 were constant over z for an initial
condition which initiated the beam in a pure kQ+, kQ-, or kL

mode.) The ellipse rotates at the frequency of the mode.
This would seem to contradict the behavior of the known
quadrupolar  mode with zero rotation in which the
ellipticity changes over the cycle of the perturbation.
However, the contradiction is resolved when it is noted
that at zero angular momentum the kQ+ mode and kQ- mode
have the same frequency kQ0, with the result that a normal
quadrupole mode can be formed by the summation of a
clockwise and counterclockwise propagating perturbation.

Figure 2.  Frequency (in units of kQ0) of quadrupole and
low frequency modes vs. parameter α (see text). (Solid is
real, dashed is imaginary).  Note for α > 1/27 the low
frequency quadrupole and low frequency merge, and an
unstable mode appears.

Figure 2 indicates that for large Γ the modes become
unstable. In the model in this paper, ∆x ′ y 0  is an
independent quantity. However, when the distribution
function which underlies the model is considered, limits
can be placed on ∆x ′ y 0  relative to ∆x0

2 .  In particular, for a
rigidly rotating equilibrium, a particle transverse velocity
(angle) satisfies ′ x = −(ω /vz )y +δ ′ x , and

′ y = (ω / vz)x +δ ′ y , where ω is the angular frequency  of
the beam, vz is the longitudinal velocity, and δ ′ x  and
δ ′ y are the particular transverse angles of the particle.

With this ansatz, the quantity Γ = ω/(kβ0 vz)- xδ ′ y =ω/(kβ0

vz), if xδ ′ y =0, i.e. Γ is the ratio of the rigid body rotation

frequency to the betatron frequency. The equilibrium
value of ∆ ′ x 0

2 =µ2kβ0

2∆x0
2 , but for rigid rotation

∆ ′ x 0
2 =Γ2kβ0

2∆x0
2 + δ ′ x 2 , (again assuming that the

correlations yδ ′ x = xδ ′ y =0), and hence Γ ≤ µ , for a

self-consistent equilibrium undergoing rigid rotation.  For
Γ ≤ µ , we find that all modes are stable.  The model
equation (eq. 2) may be integrated for arbitrary values of
Γ, however, including those with unstable modes.  The
question of whether equilibria exist with Γ > µ (for
example with non-uniform rotation) is still open.

6 ALTERNATING GRADIENT MODES
When a beam that is matched to an alternating gradient
focusing system is given an arbitrary perturbation
including a finite l0 it will oscillate under the normal
modes of that system. We have given a general
perturabation to such a system by numerically integrating
eq. 2, and examined the Fourier components of the
resulting perturbation. We plot the Fourier spectrum if
figure 3.

Figure 3. Fourier decomposition of modes for an initially
mismatched beam in an alternating gradient lattice (with
µ=0.030, and Γ=0.032) Frequencies shown relative to kβ0.

As can be seen, spectral lines exist at the mode
frequencies for a uniform beam and also approximately at
the fundamental lattice frequency kLat= π/L (where L is the
half-lattice period of the alternating gradient lattice) and
integer multiples of this frequency, plus and minus the
frequency of the four modes discussed in the uniform
focusing case. Here ∆x ′ y 0  and ∆x0

2  are averaged over a

lattice period to calculate Γ. We thus expect that the
rotational modes will appear in an “average” sense  in less
idealized systems.

7  CONCLUSIONS
This work has shown the existence of additional low order
“envelope” modes in beams that acquire finite angular
momentum through, for example, the presence of skew
quadrupole errors or longitudinal magnetic fields.  The
presence of these beam modes provide additional
possibilities for particle/envelope resonances and possible
halo formation, and should be considered  in the context
of general beam mismatches.
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